Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Immunol ; 13: 1021928, 2022.
Article in English | MEDLINE | ID: covidwho-2123417

ABSTRACT

ACE2 and TMPRSS2 are crucial for SARS-CoV-2 entry into the cell. Although ACE2 facilitates viral entry, its loss leads to promoting the devastating clinical symptoms of COVID-19 disease. Thus, enhanced ACE2/TMPRSS2 expression is likely to increase predisposition of target cells to SARS-CoV-2 infection. However, little evidence existed about the biological kinetics of these two enzymes and whether dexamethasone treatment modulates their expression. Here, we show that the expression of ACE2 at the protein and mRNA levels was significantly higher in the lung and heart tissues of neonatal compared to adult mice. However, the expression of TMPRSS2 was developmentally regulated. Our results may introduce a novel concept for the reduced susceptibility of the young to SARS-CoV-2 infection. Moreover, ACE2 expression but not TMPRSS2 was upregulated in adult female lungs compared to their male counterparts. Interestingly, the ACE2 and TMPRSS2 expressions were upregulated by dexamethasone treatment in the lung and heart tissues in both neonatal and adult mice. Furthermore, our findings provide a novel mechanism for the observed differential therapeutic effects of dexamethasone in COVID-19 patients. As such, dexamethasone exhibits different therapeutic effects depending on the disease stage. This was supported by increased ACE2/TMPRSS2 expression and subsequently enhanced infection of normal human bronchial epithelial cells (NHBE) and Vero E6 cells with SARS-CoV-2 once pre-treated with dexamethasone. Therefore, our results suggest that individuals who take dexamethasone for other clinical conditions may become more prone to SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 Drug Treatment , Humans , Male , Female , Mice , Animals , Angiotensin-Converting Enzyme 2/genetics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Serine Endopeptidases/genetics
2.
Microbiol Spectr ; 10(4): e0173022, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1986341

ABSTRACT

SARS-CoV-2 variants exhibit different viral transmissibility and disease severity. However, their impact on erythropoiesis has not been investigated. Here, we show SARS-CoV-2 variants differentially affect erythropoiesis. This is illustrated by the abundance of CD71+ erythroid cells (CECs) in the blood circulation of COVID-19 patients infected with the original Wuhan strain followed by the Delta and Omicron variants. We observed the CD45+CECs are the dominant subpopulation of CECs expressing the receptor, ACE2, and coreceptor, TMPRSS2, and thus, can be targeted by SARS-CoV-2. Also, we found CECs exhibit immunosuppressive properties, specifically CD45+CECs are the dominant immunosuppressive cells and via reactive oxygen species (ROS) and arginase I expression can impair CD8+ T cell functions. In agreement, we observed CECs suppress CD8+ T cell effector (e.g., Granzyme B expression and degranulation capacity [CD107]), which was partially but significantly reversed with l-arginine supplementation. In light of the enriched frequency of CECs, in particular, CD45+CECs in patients infected with the original (Wuhan) strain, we believe this strain has a more prominent impact on hematopoiesis compared with the Delta and Omicron variants. Therefore, our study provides an important insight into the differential impact of SARS-CoV-2 variants on erythropoiesis in COVID-19 patients. IMPORTANCE Silent hypoxia has been the hallmark of SARS-CoV-2 infection. Red blood cells (RBCs) work as gas cargo delivering oxygen to different tissues. However, their immature counterparts reside in the bone marrow and normally absent in the blood circulation. We show SARS-CoV-2 infection is associated with the emergence of immature RBCs so called CD71+ erythroid cells (CECs) in the blood. In particular, we found these cells were more prevalent in the blood of those infected with the SARS-CoV-2 original strain (Wuhan) followed by the Delta and Omicron variants. This suggests SARS-CoV-2 directly or indirectly impacts RBC production. In agreement, we observed immature RBCs express the receptor (ACE2) and coreceptor (TMPRSS2) for SARS-CoV-2. CECs suppress T cells functions (e.g., Granzyme B and degranulation capacity) in vitro. Therefore, our study provides a novel insight into the differential impact of SARS-CoV-2 variants on erythropoiesis and subsequently the hypoxia commonly observed in COVID-19 patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Erythropoiesis , Granzymes , Humans , Hypoxia , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL